## Design of IEC62271 & IEC61439 products: (training) BARE CONNECTIONS limits of IEC62271-1 changed from 50 to 60K. Could we do the same for silvered connections (75 to 85K) and tinned (65 to 75K).?

https://www.cognitor.com.br/bareconnections.pdf

**Diase help me to share** 

COCNITOR Consultancy Research and Training Ltd

|                                                                                                                                                                            | _                                   |                                                                                                                        | 2017                                                      | IEC 2017              | - 65 -                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|
| 2007 - 30                                                                                                                                                                  | - 🤇                                 | 62271-1 @ IEC:2007                                                                                                     | ZUI7<br>Table 14 – Limits of temperature and temp         | arature rise for vari | ous parts materials                                                               |
| .4.2 Temperature rise                                                                                                                                                      |                                     |                                                                                                                        | and dielectrics of high-voltage                           |                       |                                                                                   |
| temperature rise of any part of the switchgear and controlgear at an ambient air<br>perature not exceeding 40 °C shall not exceed the temperature-rise limits specified in |                                     | Nature of the part, of the material and of the dielectric<br>(Refer to points 1, 2 and 3 in 7.5.6.2) (Refer to NOTE 1) | Maximum value                                             |                       |                                                                                   |
| able 3 under the conditions specified in the ter<br>Table 3 - Limits of temperature and temper                                                                             | t clauses.<br>ature rise for variou | s parts, materials and                                                                                                 |                                                           | Temperature           | Temperature rise at<br>ambient air temperature<br>not exceeding 40 °C<br>(NOTE 2) |
| dielectrics of high-voltage s                                                                                                                                              | witchgear and contr                 | olgear                                                                                                                 |                                                           | °C                    | к                                                                                 |
| lature of the part, of the material and of the dielectri                                                                                                                   |                                     | mum value                                                                                                              | 1 Contacts (refer to point 4)                             |                       |                                                                                   |
| (Refer to points 1, 2 and 3) (Refer to note)                                                                                                                               | Temperature                         | Temperature rise at<br>ambient air temperature                                                                         | Bare-copper or bare-copper alloy                          |                       |                                                                                   |
|                                                                                                                                                                            |                                     | not exceeding 40 °C                                                                                                    | <ul> <li>in OG (refer to point 5)</li> </ul>              | 75                    | 35                                                                                |
|                                                                                                                                                                            | °C                                  | к                                                                                                                      | <ul> <li>in NOG (refer to point 5)</li> </ul>             | 115                   | 75                                                                                |
| Contacts (refer to point 4)                                                                                                                                                |                                     |                                                                                                                        | – in oil                                                  | 80                    | 40                                                                                |
| Bare-copper or bare-copper alloy                                                                                                                                           |                                     |                                                                                                                        | Silver-coated or nickel-coated (refer to point 6)         |                       |                                                                                   |
| – in air                                                                                                                                                                   | 75                                  | 35                                                                                                                     | <ul> <li>in OG (refer to point 5)</li> </ul>              | 115                   | 75                                                                                |
| <ul> <li>in SF<sub>6</sub> (sulphur hexafluoride) (refer to point 5)</li> <li>in oil</li> </ul>                                                                            | 105                                 | 65                                                                                                                     | <ul> <li>in NOG (refer to point 5)</li> </ul>             |                       | 75                                                                                |
| <ul> <li>in oil</li> <li>Silver-coated or nickel-coated (refer to point 6)</li> </ul>                                                                                      | 80                                  | 40                                                                                                                     |                                                           | 115                   |                                                                                   |
| <ul> <li>in air</li> </ul>                                                                                                                                                 | 105                                 | 65                                                                                                                     | - in oil                                                  | 90                    | 50                                                                                |
| <ul> <li>in SF<sub>6</sub> (refer to point 5)</li> </ul>                                                                                                                   | 105                                 | 65                                                                                                                     | Tin-coated (refer to point 6)                             |                       |                                                                                   |
| - in oil                                                                                                                                                                   | 90                                  | 50                                                                                                                     | <ul> <li>in OG (refer to point 5)</li> </ul>              | 90                    | 50                                                                                |
| Tin-coated (refer to point 6)                                                                                                                                              |                                     |                                                                                                                        | <ul> <li>in NOG (refer to point 5)</li> </ul>             | 90                    | 50                                                                                |
| - in air                                                                                                                                                                   | 90                                  | 50                                                                                                                     | - in oil                                                  | 90                    | 50                                                                                |
| <ul> <li>in SF<sub>6</sub> (refer to point 5)</li> </ul>                                                                                                                   | 90                                  | 50                                                                                                                     | 2 Connection, bolted or the equivalent (refer to point 4) |                       |                                                                                   |
| - in oil                                                                                                                                                                   | 90                                  | 50                                                                                                                     | Bare-copper, bare-copper alloy or bare-aluminium alloy    |                       |                                                                                   |
| Connection, bolted or the equivalent (refer to point 4)                                                                                                                    |                                     |                                                                                                                        | <ul> <li>in OG (refer to point 5)</li> </ul>              | 100                   | <b>60</b>                                                                         |
| Bare-copper, bare-copper alloy or bare-aluminium alloy                                                                                                                     |                                     |                                                                                                                        | <ul> <li>in NOG (refer to point 5)</li> </ul>             | 115                   | 75                                                                                |
| - in air                                                                                                                                                                   | 90 🕻                                | 50                                                                                                                     | - in oil                                                  | 100                   | 60                                                                                |
| <ul> <li>in SF<sub>6</sub> (refer to point 5)</li> </ul>                                                                                                                   | 115                                 | 75                                                                                                                     | Silver-coated or nickel-coated (refer to point 6)         | 100                   |                                                                                   |
| <ul> <li>in oil</li> <li>Silver coated or nickel coated refer to point 6)</li> </ul>                                                                                       | 100                                 | 60                                                                                                                     | <ul> <li>in QG (refer to point 5)</li> </ul>              | 115                   | 75                                                                                |
| in air                                                                                                                                                                     | 115                                 | 75                                                                                                                     |                                                           |                       |                                                                                   |
| <ul> <li>in SF<sub>6</sub> (refer to point 5)</li> </ul>                                                                                                                   | 115                                 | 75                                                                                                                     | <ul> <li>in NOG (refer to point 5)</li> </ul>             | 115                   | 75                                                                                |
| - in oil                                                                                                                                                                   | 100                                 | 60                                                                                                                     | - in oil                                                  | 100                   | 60                                                                                |
| Tin-coated                                                                                                                                                                 | 100                                 | 70                                                                                                                     | Tin-coated                                                |                       |                                                                                   |
| in air                                                                                                                                                                     | 105                                 | 65                                                                                                                     | <ul> <li>in OG (refer to point 5)</li> </ul>              | 105                   | 65                                                                                |
| <ul> <li>in SF<sub>6</sub> (refer to point 5)</li> </ul>                                                                                                                   | 105                                 | 65                                                                                                                     | <ul> <li>in NOG (refer to point 5)</li> </ul>             | 105                   | 65                                                                                |
| - in oil                                                                                                                                                                   | 100                                 | 60                                                                                                                     | - in oil                                                  | 100                   | 60                                                                                |

### 1) EXPLAINING THE REASONS,

Author Sergia Faitaza Costa

IEC62271-1 is one of the best prepared IEC documents I know. If I understood correctly, the temperature rises limits of 2007 version raised from 50K to 60K in the 2017 version.

This is good because means (\*\*) reducing something like 8% of busbars weight, to pass the temperature rise test. I am looking for information about the reasoning. Possibly the knowledge on use of materials advanced to enable this.

I suppose that the experience of manufacturers and users is already sufficient to do – at least in AIS and GIS - something like this for silvered and tinned connections. I mean something like raising from 75 to 85K in the silvered connections and , for tinned connections, from 65K to 75 K.

#### I HAVE TWO QUESTIONS:

a) Is there any study in course to update the silvered and tinned limits ?

b) As the change was possible in HV switchgear could this be done in the temperature rise table of IEC 61439 (\*). Materials are the same. Is there any action to define real values in the LV standard, to ending the unnecessary confusion caused to the market, by that table?

References:

<sup>(\*)</sup> item 3 of the article <a href="https://www.cognitor.com.br/improvementsiec.pdf">https://www.cognitor.com.br/improvementsiec.pdf</a>

<sup>(\*\*) &</sup>lt;u>http://www.cognitor.com.br/silvered.pdf</u>

By the way, I am currently doing R&D work to identify the most economical methods to silver or tin plate the ends of copper bars used in IEC 62271 and IEC 61439 panels. If anyone wants to help me, let me know where I can find articles. I imagine that there are already faster methods than electrolytic processes, for small and large thicknesses. Are there already machines to do this quickly, at least for small thicknesses? Maybe the Chinese developed something in this field.

# For doubts write to <u>sergiofeitozacosta@gmail.com</u> or post in the comments area of my Linkedin <u>https://www.linkedin.com/in/sergiofeitozacosta/</u>

| Temperature rise in the connection (K) | Busbar dimensions per<br>phase | Weight of copper (kg)<br>and % of 50Kvalue | Total<br>kg/MVA |
|----------------------------------------|--------------------------------|--------------------------------------------|-----------------|
| 50K                                    | 100x10 mm                      | 110 (100%)                                 | 142             |
| 60K                                    | 83,5x10 mm                     | 92 (84%)                                   | 130             |
| 65K                                    | 77,5x10 mm                     | 85 (77%)                                   | 125             |
| 75K                                    | 67,8x10 mm                     | 74 (67%)                                   | 118             |





#### REFERENCES

[1] Training about Substation Equipment design & testing (Switchgear, Controlgear, Switchboards & Busways): <a href="https://www.cognitor.com.br/trainingENG.pdf">https://www.cognitor.com.br/trainingENG.pdf</a>

The author of this paper is Mr. Sergio Feitoza Costa. Sergio is an electrical engineer, M. Sc in Power Systems and director of COGNITOR.

- Free Downloads area:
- Curriculum
- Training + SwitchgearDesign
- Consultancy services:

http://www.cognitor.com.br/Downloads1.html https://www.cognitor.com.br/Curriculum.html https://www.cognitor.com.br/trainingENG.pdf https://www.cognitor.com.br/proposal.pdf